Lubrication

Rexroth Roller Rail Systems are delivered filled with an anti-corrosion agent.

Immediately after mounting the runner blocks (before start-up), make sure the system has sufficient initial lubrication (basic lubrication). Depending on the runner block type, the following lubricant types are possible:

- Both grease and oil
- Oil only

Grease lubrication using grease guns or progressive feeder systems

Recommended grease types

We recommend using **Dynalub 510** with the following properties:

- High performance lithium soap grease, consistency class NLGI 2, to DIN 51818 (KP2K-20 to DIN 51825)
- Good water resistance
- Corrosion protection
- Temperature range: -20 to +80°C

Initial lubrication of the runner blocks (basic lubrication)

Stroke $\geq 2 \cdot \text{runner block length B}_1$ (normal stroke)

• For initial lubrication, mount one lube fitting per runner block, at either of the two end caps!

•

Initial lubrication is applied in three partial quantities as specified in table 1:

- 1. Grease the runner block with the first partial quantity as per Table 1, pressing it in slowly with the help of a grease gun.
- 2. Slide the runner block back and forth over at least three times the block length (size 125: at least 300 mm) for three full cycles.
- 3. Repeat steps 1. and 2. twice more.
- 4. Check whether a film of lubricant is visible on the guide rail.

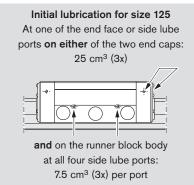
Stroke < $2 \cdot$ runner block length B_1 (short stroke)

• Install and lubricate two lube fittings per runner block, one on each of the two end caps!

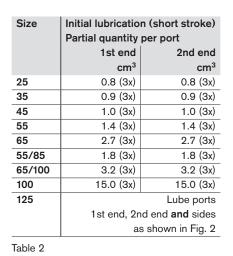
Initial lubrication is applied to each fitting in three partial quantities as specified in table 2:

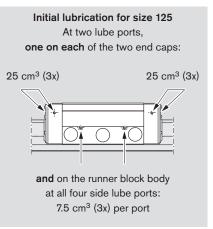
- 1. Grease each fitting on the runner block with the first partial quantity as per Table 2, pressing it in slowly with the help of a grease gun.
- 2. to 4. Repeat the procedure as for initial lubrication (normal stroke).

Under conventional environmental conditions this ground-fiber, homogeneous grease is ideally suited for the lubrication of linear elements:


- At loads of up to 50% C
- For short-stroke applications > 1 mm
 For the permissible speed range of Roller Rail Systems

The product and safety data sheets can be found on our website at <u>www.boschrexroth.de/brl</u>. Please also read the notes on page 154 of this catalog!


Part numbers for Dynalub 510:


- R3416 037 00 (cartridge 400 g)
- R3416 035 00 (hobbock 25 kg)

Size	Initial lubrication (normal stroke) Partial quantity cm ³
25	0.8 (3x)
35	0.9 (3x)
45	1.0 (3x)
55	1.4 (3x)
65	2.7 (3x)
55/85	1.8 (3x)
65/100	3.2 (3x)
100	15.0 (3x)
125	as shown in Fig. 1

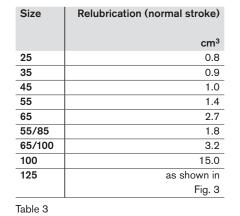
Table	1

Lubrication

Grease lubrication using grease guns or progressive feeder systems (continued)

Relubrication of runner blocks

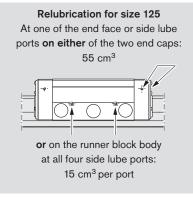
Stroke $\geq 2 \cdot \text{runner block length B}_1$ (normal stroke)


• When the travel distance shown as the relubrication interval in Fig. 5 has been reached, apply the relubrication quantity as specified in Table 3.

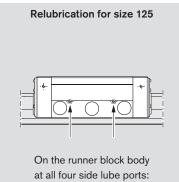
Please also read the notes on relubrication on page 154 of this catalog!

Stroke $< 2 \cdot \text{runner block length B}_1$ (short stroke)

- · When the travel distance shown as the relubrication interval in Fig. 5 has been reached, apply the relubrication quantity as specified in Table 4.
- At each lubrication cycle the runner block should be traversed through a lubricating stroke of 3 · runner block length B₁. In any case, the lubricating stroke must be at least the length of the runner block. If the largest possible lubricating stroke is smaller than the runner block length B₁, lubricant must be applied to the guide rail. Please consult us for details.


Please also read the notes on relubrication on page 154 of this catalog!

Size	Relubrication (short stroke)		
	per port		
	1st end	2nd end	
	cm ³	cm ³	
25	0.8	0.8	
35	0.9	0.9	
45	1.0	1.0	
55	1.4	1.4	
65	2.7	2.7	
55/85	1.8	1.8	
65/100	3.2	3.2	
100	15.0	15.0	


125

Side ports

as shown in Fig. 4

Lubrication

Grease lubrication using grease guns or progressive feeder systems (continued)

Load-dependent relubrication intervals for grease lubrication using grease guns or progressive feeder systems ("dry axes")

Sizes 25 to 125

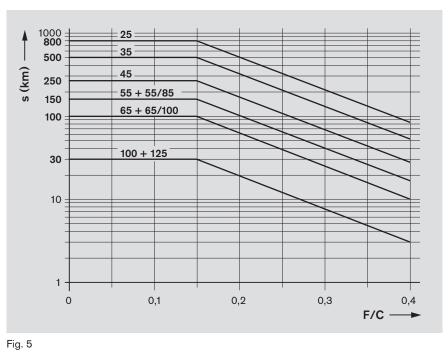
The following conditions apply:

- Grease lubricant Dynalub 510or alternatively
- Castrol Longtime PD 2
- Maximum speed:
- $v_{max} = 2 \text{ m/s}$
- No exposure to metalworking fluids
- Standard seals
- Ambient temperature:
- $T = 20 30^{\circ}C$

Key to graph

s	=	relubrication interval	
		expressed as travel	(km)
С	=	dynamic load capacity	(N)
-			(8.1)

F = equivalent dynamic load (N)


Notes

The load ratio F/C is the quotient of the equivalent dynamic load on the bearing F (making allowance for a preload of 8% C or 13% C) divided by the dynamic load capacity C (see "General Technical Data and Calculations").

▲ If other lubricants are used, this may lead to a reduction in the relubrication intervals, the achievable travel in short-stroke applications, and the load capacities. Possible chemical interactions between the plastic materials, lubricants and preservative oils must also be taken into account.

Do not use greases containing solid particles (e.g., graphite or MoS₂)!

When using progressive feeder systems, do not go below the minimum dosing quantity for relubrication as given in Table 9.

For relubrication intervals in applications involving exposure to metalworking fluids, please consult us.

▲ If the system is to be exposed to metalworking fluids, always apply 2 to 5 lubricant pulses at the beginning or when the system has been at a standstill for a longer period. If possible, apply lubricant while the system is in motion. Carry out cleaning and lubricating strokes (see "Maintenance").

If the application conditions involve dirt, vibrations, impacts, etc. we recommend shortening the relubrication intervals accordingly. Even under normal operating conditions, the system must be relubricated at the latest after 2 years due to aging of the grease. If your application involves more demanding environmental requirements (such as clean room, vacuum, food industry environment, increased exposure to fluids or aggressive media, extreme temperatures), please consult us. These situations must be investigated on a case by case basis and may require the use of a special lubricant. Be sure to have all the information concerning your application at hand when contacting us.

Switching from grease to oil lubrication while the system is in service is not possible as the lubrication ducts are already filled with grease, and oil will not be able to pass through them.

Lubrication

Liquid grease lubrication via single-line piston distributor systems

Liquid grease lubrication

We recommend using Dynalub 520 with the following properties:

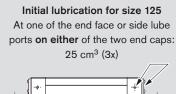
- High performance lithium soap grease, consistency class NLGI 00, to DIN 51818 (GP00K-20 to DIN 51826)
- Good water resistance
- Corrosion protection
- Temperature range: -20 to +80°C

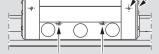
Initial lubrication of the runner blocks (basic lubrication)

Under conventional environmental conditions this ground-fiber, homogeneous grease is ideally suited for the lubrication of linear elements:

- In single-line centralized lubrication systems
- At loads of up to 50% C
- For short-stroke applications > 1 mm
- For the permissible speed range of
- **Roller Rail Systems**
- For miniature versions

We recommend applying initial lubrication with a manual grease gun before connecting the equipment to the centralized lubrication system.


Size	Initial lubrication (normal stroke) Partial quantity cm ³
25	0.8 (3x)
35	0.9 (3x)
45	1.0 (3x)
55	1.4 (3x)
65	2.7 (3x)
55/85	1.8 (3x)
65/100	3.2 (3x)
100	15.0 (3x)
125	as shown in Fig. 6


The product and safety data sheets can be found on our website at www.boschrexroth.de/brl. Please also read the notes on page 158 of this catalog!

Part numbers for Dynalub 520:

- R3416 043 00 (cartridge 400 g)
- R3416 042 00 (bucket 5 kg)

If initial lubrication is nevertheless carried out via the centralized lubrication system, it is essential that all lines and piston distributors should be filled. The pulse count can then be calculated from the partial quantities and the piston distributor size according to Table 9.

and on the runner block body at all four side lube ports: 7.5 cm³ (3x) per port

25 cm³ (3x)

Fig. 6

Table 5

Size

25

35 45

55

65

55/85

65/100

100

125

Initia

Part

al lubrication (short stroke) tial quantity per port			ation for size 25 lube ports,
1st end cm ³	2nd end cm ³		f the two end caps:
0.8 (3x)	0.8 (3x)	25 cm ³ (3x)	25 cm ³ (
0.9 (3x) 1.0 (3x)	0.9 (3x) 1.0 (3x)		
1.4 (3x) 2.7 (3x)	1.4 (3x) 2.7 (3x)		
1.8 (3x) 3.2 (3x)	1.8 (3x) 3.2 (3x)		
15.0 (3x)	15.0 (3x)	and on the ru	unner block body
,	Lube ports ad end and sides s shown in Fig. 7		ide lube ports: (3x) per port

Table 6

Stroke $\geq 2 \cdot \text{runner block length B}_1$ (normal stroke)

For initial lubrication, mount one lube fitting per runner block, at either of the two end caps!

Initial lubrication is applied in three partial quantities as specified in table 5:

- 1. Grease the runner block with the first partial quantity as per Table 5, pressing it in slowly with the help of a grease gun.
- 2. Slide the runner block back and forth over at least three times the block length (size 125: at least 300 mm) for three full cycles.
- 3. Repeat steps 1. and 2. twice more.
- 4. Check whether a film of lubricant is visible on the guide rail.

Stroke < 2 · runner block length B₁ (short stroke)

• Install and lubricate two lube fittings per runner block, one on each of the two end caps!

Initial lubrication is applied to each fitting in three partial quantities as specified in table 6:

- 1. Grease each fitting on the runner block with the first partial quantity as per Table 6, pressing it in slowly with the help of a grease gun.
- 2. to 4. Repeat the procedure as for initial lubrication (normal stroke).

Lubrication

Liquid grease lubrication via single-line piston distributor systems (continued)

Relubrication of runner blocks

Stroke $\geq 2 \cdot \text{runner block length B}_1$ (normal stroke)

• Apply the minimum quantity according to Table 7 to the lube port until the relubrication interval as specified (in Fig. 10) has been reached.

Notes

The required pulse count is the quotient (as a whole number) of the minimum relubrication quantity according to Table 7 and the smallest permissible piston dis-tributor size (i.e. the minimum pulse quantity) according to Table 9. The smallest permissible piston distributor size also depends on the mounting orientation.

The lubricant cycle time can then be obtained by dividing the relubrication interval (according to Fig. 10) by the calculated pulse count (see design example on page 163).

Stroke $< 2 \cdot runner block length <math display="inline">{\rm B_1}$ (short stroke)

- Apply the minimum quantity according to Table 8 per lube port until the relubrication interval as specified (in Fig. 10) has been reached.
 Calculate the required pulse count and lubricant cycle time in the same way as for relubrication (normal stroke).
- At each lubrication cycle the runner block should be traversed through a lubricating stroke of 3 · runner block length B₁. In any case, the lubricating stroke must be at least the length of the runner block. If the largest possible lubricating stroke is smaller than the runner block length B₁, lubricant must be applied to the guide rail. Please consult us for details.

Please also read the notes on relubrication on page 158 of this catalog!

Size	Relubrication (normal stroke)	
	cm ³	
25	0.8	
35	0.9	
45	1.0	
55	1.4	
65	2.7	
55/85	1.8	
65/100	3.2	
100	15.0	
125	as shown in	
	Fig. 8	

Please also read the notes on relubrication on page 158 of this catalog!

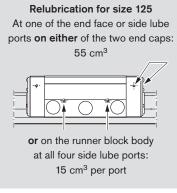


Fig. 8

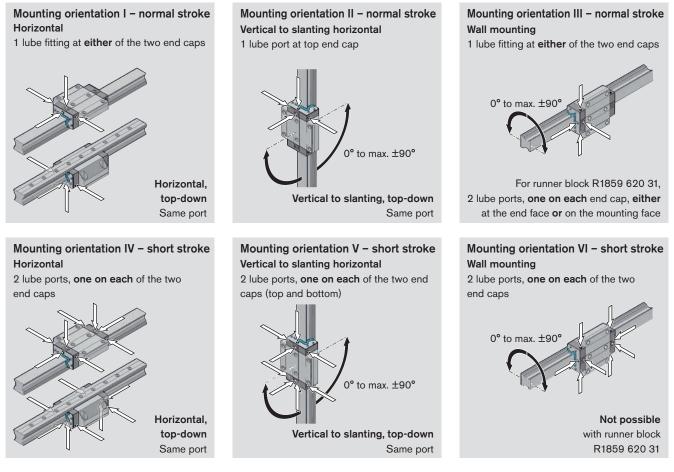

Size	Relubrication (short stroke) per port		
	1st end	2nd end	
	cm ³	cm ³	
25	0.8	0.8	
35	0.9	0.9	
45	1.0	1.0	
55	1.4	1.4	
65	2.7	2.7	
55/85	1.8	1.8	
65/100	3.2	3.2	
100	15.0	15.0	
125		Side ports	
	a	s shown in Fig. 9	

Table 8

Lubrication

Liquid grease lubrication via single-line piston distributor systems (continued)

 Smallest permissible piston distributor sizes for liquid grease lubrication through single-line centralized systems¹⁾

 Runner blocks
 Smallest permissible piston distributor size (\Leftrightarrow minimum pulse quantity)

 per lube pert (em3) for liquid grease NLCL close 00

per lube port (cm ²) for liquid grease, NLGI class 00										
		Size								
Part numbers	Mounting orientations	25	35	45	55	65	55/85	65/100	100	125
R18 10 or 60 or	Horizontal I, IV	0.06	0.1	0.1	0.1	0.2	0.1	0.2	0.3	0.3
R18 13 or 63 or	Vertical II, V	0.06	0.1	0.1	0.1	0.2	0.1	0.2	0.3	0.3
R18 16 or 66	Wall mounting III, VI	0.06	0.1	0.1	0.1	0.2	0.1	0.2	0.3 (2x) ²⁾	0.3 (2x) ²⁾³⁾
R18 18 or 68	Wall mounting III, VI ²⁾	-	0.06	0.06	0.06	-	-	-	-	-
R1859 620 31	Wall mounting III	-	-	-	-	0.1	-	-	-	-

Table 9

- 1) Applies under the following conditions:
 - Dynalub 520 (or alternatively Castrol Longtime PD 00) and piston distributors from Vogel
 - Lube ducts must be filled
 - Ambient temperature T = 20 30 °C
- 2) Sizes 100 and 125: Either two pulses in short succession or two metering valves each delivering one pulse simultaneously
- 3) Size 125: 0.3 cm³ per port when all four ports in the runner block body are used

Lubrication

Liquid grease lubrication via single-line piston distributor systems (continued)

Load-dependent relubrication intervals for liquid grease lubrication via single-line piston distributor systems ("dry axes")

Sizes 25 to 125

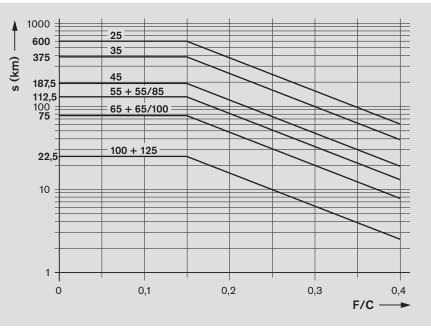
The following conditions apply:

- Liquid grease Dynalub 520 or alternatively Castrol Longtime PD 00
- Maximum speed:
- $v_{max} = 2 \text{ m/s}$
- No exposure to metalworking fluids
- Standard seals
- Ambient temperature:
- $T = 20 30^{\circ}C$

Key to graph

s	=	relubrication interval	
		expressed as travel	(km)
С	=	dynamic load capacity	(N)

F	= equivale	nt dynamic	load	(N)
		,		


Notes

The load ratio F/C is the quotient of the equivalent dynamic load on the bearing F (making allowance for a preload of 8% C or 13% C) divided by the dynamic load capacity C (see "General Technical Data and Calculations").

▲ If other lubricants are used, this may lead to a reduction in the relubrication intervals, the achievable travel in short-stroke applications, and the load capacities. Possible chemical interactions between the plastic materials, lubricants and preservative oils must also be taken into account. In addition, the suitability of the lubricant for use in single-line centralized lubrication systems must be ensured.

 \triangle Do not use greases containing solid particles (e.g., graphite or MoS₂)!

If the system is to be exposed to metalworking fluids, always apply 2 to 5 lubricant pulses at the beginning or when the system has been at a standstill for a longer period. If possible, apply lubricant while the system is in motion. Carry out cleaning and lubricating cycles (see "Maintenance").

For relubrication intervals in applications involving exposure to metalworking fluids, please consult us.

Without taking distance traveled into account Assume 3 to 4 pulses per hour as a guide value for relubrication.

▲ If the application conditions involve dirt, vibrations, impacts, etc. we recommend shortening the relubrication intervals accordingly. Even under normal operating conditions, the system must be relubricated at the latest after 2 years due to aging of the grease.

If your application involves more demanding environmental requirements (such as clean room, vacuum, food industry environment, increased exposure to fluids or aggressive media, extreme temperatures), please consult us. These situations must be investigated on a case by case basis and may require the use of a special lubricant. Be sure to have all the information concerning your application at hand when contacting us.

Switching from grease to oil lubrication while the system is in service is not possible as the lubrication ducts are already filled with grease, and oil will not be able to pass through them. We recommend using piston distributors from Vogel. These should be installed as close as possible to the lube ports of the runner bocks.

Long lines and small line diameters should be avoided, and the lines should be laid on an upward slant.

A selection of possible lube fittings is given in the section "General Accessories – Runner Blocks" (for more information, you should also consult the manufacturer of your lubrication system).

If other consumers are connected to the single-line centralized lubrication system, the weakest link in the chain will determine the lubrication cycle time.

Lubrication

Oil lubrication via single-line piston distributor systems

Oil lubricant

We recommend using **Shell Tonna S 220** with the following properties:

- Special demulsifying oil CLP or CGLP to DIN 51517-3 for machine bed tracks and tool guides
- A blend of highly refined mineral oils and additives
- Can be used even when mixed with significant quantities of metalworking fluids

Initial lubrication of the runner blocks (basic lubrication)

We recommend applying initial lubrication with a manual grease gun before connecting the equipment to the centralized lubrication system.

Initial lubrication

(normal stroke)

Partial quantity

cm³

1.2 (2x)

1.3 (2x)

1.5 (2x)

2.0 (2x)

4.0 (2x)

2.7 (2x)

4.8 (2x)

11.0 (2x)

as shown in Fig. 11

Please also read the notes on page 162

of this catalog!

Size

25

35

45

55

65

55/85

65/100

100

125

Table 10

If initial lubrication is nevertheless carried out via the centralized lubrication system, it is essential that all lines and piston distributors should be filled. The pulse count can then be calculated from the partial quantities and the piston distributor size according to Table 14.

Stroke $\geq 2 \cdot \text{runner block length B}_1$ (normal stroke)

 For initial lubrication, mount one lube fitting per runner block, at either of the two end caps!

Initial lubrication is applied in two partial quantities as specified in table 10:

- 1. Apply the first of the oil quantities as specified in table 10 to the runner block.
- 2. Slide the runner block back and forth over at least three times the block length (size 125: at least 300 mm) for three full cycles.
- 3. Repeat steps 1. and 2.
- 4. Check whether a film of lubricant is visible on the guide rail.

Stroke $< 2 \cdot$ runner block length B₁ (short stroke)

 Install and lubricate two lube fittings per runner block, one on each of the two end caps!

Initial lubrication is applied in two partial quantities per lube fitting as specified in table 11:

- 1. Apply the first of the oil quantities as specified in table 11 to each of the lube fittings on the runner block.
- 2. to 4. Repeat the procedure as for initial lubrication (normal stroke).

Size Initial lubrication (short stroke) Partial quantity per port 1st end 2nd end cm³ cm³ 25 1.2 (2x) 1.2 (2x) 35 1.3 (2x) 1.3 (2x) 45 1.5 (2x) 1.5 (2x) 55 2.0 (2x) 2.0 (2x) 65 4.0 (2x) 4.0 (2x) 55/85 2.7 (2x) 2.7 (2x) 65/100 4.8 (2x) 4.8 (2x) 100 11.0 (2x) 11.0 (2x) Lube ports 125 1st end, 2nd end and sides as shown in Fig. 12

Table 11

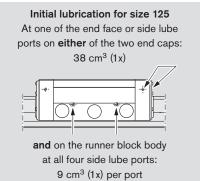
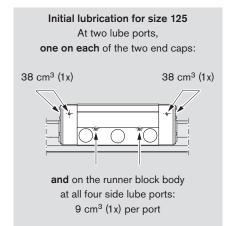



Fig. 11

Lubrication

Oil lubrication via single-line piston distributor systems (continued)

Relubrication of runner blocks

. . . . 1 - · · · · · ·

Stroke $\geq 2 \cdot \text{runner block length B}_1$ (normal stroke)

· Apply the minimum quantity according to Table 12 to the lube port until the relubrication interval as specified (in Fig. 15) has been reached.

Notes

The required pulse count is the quotient (as a whole number) of the minimum relubrication quantity according to Table 12 and the smallest permissible piston distributor size (i.e. the minimum pulse quantity) according to Table 14. The smallest permissible piston distributor size also depends on the mounting orientation.

The lubricant cycle time can then be obtained by dividing the relubrication interval (according to Fig. 15) by the calculated pulse count.

Stroke < 2 · runner block length B₁ (short stroke)

- Apply the minimum quantity according to Table 13 per lube port until the relubrication interval as specified (in Fig. 15) has been reached. Calculate the required pulse count and lubricant cycle time in the same way as for relubrication (normal stroke).
- At each lubrication cycle the runner • block should be traversed through a lubricating stroke of 3 · runner block length B₁. In any case, the lubricating stroke must be at least the length of the runner block. If the largest possible lubricating stroke is smaller than the runner block length B₁, lubricant must be applied to the guide rail. Please consult us for details.

Please also read the notes on relubrication on page 162 of this catalog!

Size	Relubrication (normal stroke)
	cm ³
25	1.2
35	1.3
45	1.5
55	2.0
65	4.0
55/85	2.7
65/100	4.8
100	11.0
125	as shown in
	Fig. 13
Table 12	·

Please also read the notes on relubrication on page 162 of this catalog!

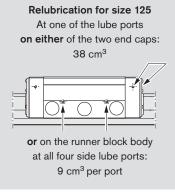
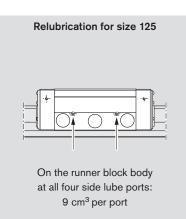



Fig. 13

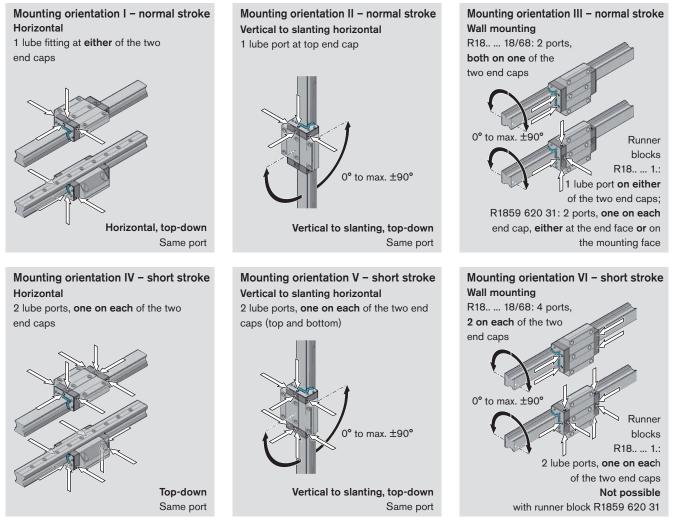

Size	Relubrication (short stroke) per port			
	1st end	1st end 2nd end		
	cm ³	cm ³		
25	1.2	1.2		
35	1.3	1.3		
45	1.5	1.5		
55	2.0	2.0		
65	4.0	4.0		
55/85	2.7	2.7		
65/100	4.8	4.8		
100	11.0	11.0		
125	Side ports			
	as shown in Fig. 14			

Table 13

Lubrication

Oil lubrication via single-line piston distributor systems (continued)

Smallest permissible piston distributor sizes for oil lubrication via single-line centralized systems¹⁾
Runner blocks | Smallest permissible piston distributor size (\Leftrightarrow minimum pulse quantity)

		per lube port (cm ³) at oil viscosity 220 mm ² /s								
Part numbers	Mounting orientations	25	35	45	55	65	55/85	65/100	100	125
R18 10 or 60 or	Horizontal I, IV	0.06	0.10	0.10	0.16	0.2	0.6	0.6	1.5	1.5
R18 13 or 63 or	Vertical II, V	0.06	0.10	0.10	0.16	0.2	0.6	0.6	1.5	1.5
R18 16 or 66	Wall mounting III, VI ²⁾	0.10	0.20	0.40	0.40	0.6	1.0	1.5	1.5 (3x) ³⁾	1.5 (3x) ³⁾⁴⁾
R18 17 or 67	Horizontal I, IV	-	0.06	0.06	0.10	-	-	-	-	-
	Vertical II, V	-	0.06	0.06	0.10	-	-	-	-	-
	Wall mounting III, VI ²⁾	-	0.06	0.10	0.16	-	-	-	-	-
R18 18 or 68	Wall mounting III, VI ²⁾	-	0.06	0.06	0.10	-	-	-	-	-
R1859 620 31	Wall mounting III	-	-	-	-	0.1	-	-	-	-

Table 14

1) Applies under the following conditions: Lube oil Shell Tonna S 220 using piston distributors from Vogel

2) Please note the varying suitability of the runner bocks for the mounting orientations wall mounting III, VI:

- +++ runner blocks R18.. ... 18 or ... 68
- ++ runner blocks R18.. ... 17 or ... 67
- + runner blocks R18.. ... 10/13/16 or ... 60/63/66
- 3) Sizes 100 and 125: Either three pulses in short succession or three metering valves delivering one pulse simultaneously

4) Size 125: 1.5 cm³ per port when all four ports in the runner block body are used

Lubrication

Oil lubrication via single-line piston distributor systems (continued)

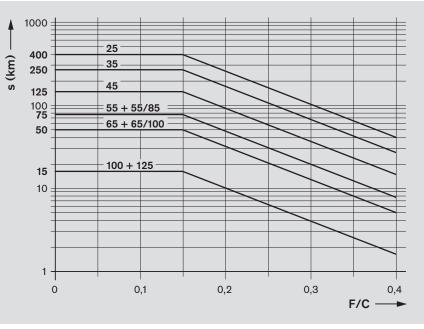
Load-dependent relubrication intervals for oil lubrication via single-line piston distributor systems ("dry axes")

Sizes 25 to 125

The following conditions apply:

- Shell Tonna S 220
- Maximum speed:
- $v_{max} = 2 \text{ m/s}$
- No exposure to metalworking fluids
- Standard seals
- Ambient temperature: T = $20 - 30^{\circ}C$

Key to graph


s	= relubrication interval	
	expressed as travel	(km)
С	 dynamic load capacity 	(N)
F	 equivalent dynamic load 	(N)

Notes

The load ratio F/C is the quotient of the equivalent dynamic load on the bearing F (making allowance for a preload of 8% C or 13% C) divided by the dynamic load capacity C (see "General Technical Data and Calculations").

If other lubricants are used, this may lead to a reduction in the relubrication intervals, the achievable travel in short-stroke applications, and the load capacities. Possible chemical interactions between the plastic materials, lubricants and preservative oils must also be taken into account. In addition, the suitability of the lubricant for use in single-line centralized lubrication systems must be ensured.

 \triangle Do not use greases containing solid particles (e.g., graphite or MoS₂)!

For relubrication intervals in applications involving exposure to metalworking fluids, please consult us.

Without taking distance traveled into account

Assume 3 to 4 pulses per hour as a guide value for relubrication.

If the system is to be exposed to metalworking fluids, always apply 2 to 5 lubricant pulses at the beginning or when the system has been at a standstill for a longer period. If possible, apply lubricant while the system is in motion. Carry out cleaning and lubricating cycles (see "Maintenance").

If the application conditions involve dirt, vibrations, impacts, etc. we recommend shortening the relubrication intervals accordingly.

If your application involves more demanding environmental requirements (such as clean room, vacuum, food industry environment, increased exposure to fluids or aggressive media, extreme temperatures), please consult us. These situations must be investigated on a case by case basis and may require the use of a special lubricant. Be sure to have all the information concerning your application at hand when contacting us. Switching from grease to oil lubrication while the system is in service is not possible as the lubrication ducts are already filled with grease, and oil will not be able to pass through them.

We recommend using piston distributors from Vogel. These should be installed as close as possible to the lube ports of the runner bocks. Long lines and small line diameters should be avoided, and the lines should be laid on an upward slant.

A selection of possible lube fittings is given in the section "General Accessories – Runner Blocks" (for more information, you should also consult the manufacturer of your lubrication system).

If other consumers are connected to the single-line centralized lubrication system, the weakest link in the chain will determine the lubrication cycle time.

Lubrication

Design calculation example for lubrication of a typical 2-axis application with centralized lubrication

X-axis

Component or parameter	Given data					
Runner block	Size 45; 4 blocks; C = 92,300 N; part numbers: R1851 423 10 (catalog page 38)					
Guide rail	Size 45; 2 rails; L = 1,500 mm; part numbers	Size 45; 2 rails; L = 1,500 mm; part numbers: R1805 463 61 (catalog page 64)				
Equivalent dynamic load on bearing	F = 20,768 N (per runner block) taking into account the preload (in this case 8% C)					
Stroke	500 mm					
Average speed	$v_m = 1 m/s$					
Temperature	20 to 30°C					
Mounting orientation	Horizontal					
Lubrication	Single-line centralized lubrication system for all axes with liquid grease Dynalub 520					
Exposure to contaminants	No exposure to fluids, chips, dust					
Design variables	Design input (per runner block)	Information sources				
1. Normal or short stroke?	Normal stroke:	 Normal stroke formula 				
	Stroke $\geq 2 \cdot \text{runner block length B}_1$	from catalog page 155,				
	$500 \text{ mm} \ge 2 \cdot 101.5 \text{ mm}$?	B_1 from catalog page 39				
	$500 \text{ mm} \ge 203 \text{ mm}$	D ₁ nom oatalog page de				
	i.e. normal stroke					
	i.e. normai stroke					
2. Initial lubrication quantity	Initial lubrication quantity: 1.0 cm ³ (3x)	- Initial lubrication quantity from Table 5				
3. Relubrication quantity	Relubrication quantity: 1.0 cm ³	- Relubrication quantity from Table 7				
4. Mounting orientation	Mounting orientation I – normal stroke (horizontal)	 Mounting orientation from catalog page 157 				
5. Piston distributor size	Permissible piston distributor size: 0.1 cm ³	 Piston distributor size from Table 9 For size 45, mounting orientation I 				
6. Pulse count	$Pulse count = \frac{1.0 \text{ cm}^3}{0.1 \text{ cm}^3} = 10$	- Pulse count = = $\frac{\text{relubrication quantity}}{\text{perm. piston distributor size}}$				
7. Load ratio	Load ratio = $\frac{20,768 \text{ N}}{92,300 \text{ N}} = 0.225$	- Load ratio = $\frac{F}{C}$ F and C from given data				
8. Relubrication interval	Relubrication interval: 90 km	Relubrication interval from Table 10:Curve size 45 at load ratio 0.22				
9. Lubrication cycle	Lubrication cycle = $\frac{90 \text{ km}}{10} = 9 \text{ km}$	- Lube cycle = $\frac{\text{relubrication interval}}{\text{pulse count}}$				
Interim result (X-axis)	For the X-axis, a minimum quantity of 0.1 cm ³ Dynalub 520 must be supplied to each runner block every 9 km.					

Lubrication

Y-axis

Component or parameter	Given data					
Runner block	Size 35; 4 blocks; C = 56,300 N; part numbers: R1851 323 10 (catalog page 38)					
Guide rail	Size 35; 2 rails; L = 1,000 mm; part numbers: R1805 333 61					
Equivalent dynamic load on bearing	F = 8,445 N (per runner block) taking into account the preload (in this case 8% C)					
Stroke	50 mm					
Average speed	$v_m = 1 m/s$					
Temperature	20 to 30°C					
Mounting orientation	Vertical					
Lubrication	Single-line centralized lubrication system for all axes with liquid grease Dynalub 520					
Exposure to contaminants	No exposure to fluids, chips, dust					
Design variables	Design input (per runner block)	Information sources				
1. Normal or short stroke?	Normal stroke: Stroke $\ge 2 \cdot \text{runner block length B}_1$ 50 mm $\ge 2 \cdot 79.6$ mm ? 50 mm < 159.6 mm i.e. short stroke	 Normal stroke formula from catalog page 155, B₁ from catalog page 39 				
2. Initial lubrication quantity	2 lube ports, initial lubrication quantity per lube port: 0.9 cm ³ (3x)	 Initial lubrication quantity from Table 5 				
3. Relubrication quantity	2 lube ports, relubrication quantity per port: 0.9 cm ³	 Relubrication quantity from Table 7 				
4. Mounting orientation	Mounting orientation V – short stroke (vertical)	 Mounting orientation from catalog page 157 				
5. Piston distributor size	Permissible piston distributor size: 0.1 cm ³	 Piston distributor size from Table 9 for size 35, mounting orientation V 				
6. Pulse count	$Pulse count = \frac{0.9 \text{ cm}^3}{0.1 \text{ cm}^3} = 9$	 Formula as for X-axis 				
7. Load ratio	Load ratio = $\frac{8,445 \text{ N}}{56,300 \text{ N}} = 0.15$	 Formula as for X-axis, F and C from given data 				
8. Relubrication interval	Relubrication interval: 375 km	Relubrication interval from Fig. 10:Curve size 35 at load ratio 0.15				
9. Lubrication cycle	Lubrication cycle $=$ $\frac{375 \text{ km}}{9} = 42 \text{ km}$	 Formula as for X-axis 				
Interim result (Y-axis)	For the Y-axis, a minimum quantity of 0.1 cm ³ Dynalub 520 must be supplied to each runner block every 42 km.					
End result (two-axis lubrication)	Since both the axes in this example are supplied by a single-line centralized lubrication system, the X-axis with its smaller lube cycle (9 km) determines the overall cycle of the system, i.e. the Y-axis will also be lubricated every 9 km. The number of ports and the mini- mum lubricant quantities determined for each axis remain the same.					

Lubrication

Lubrication from above

Standard runner blocks with open lube ports for lubrication from above

The following new standard runner blocks have lube ports opened at the top:

- R18.. ... 16 or ... 66 - R18.. ... 17 or ... 67

In the new standard runner blocks for lubrication from above the top lube holes have already been opened, but they are closed with screws for shipment. In the high runner blocks S.H, slimline ... high, the vertical clearance between the end caps and an attachment mounting surface with integrated lube adapters has been designed for ease of maintenance (see Fig. B).

- Remove screw (1) from the lube hole (3).
- Insert O-ring (2) in the recess (O-ring is supplied with the runner block).

Subsequent opening of a lube hole at the top for standard runner blocks F.S and S.H and for heavy duty runner blocks

If a lube hole is to be opened up at the top of standard or heavy duty runner blocks, the following points should be noted:

\triangle In the O-ring recess there is a further pre-formed small recess (5). Do not use a drill to open this. Risk of contamination!

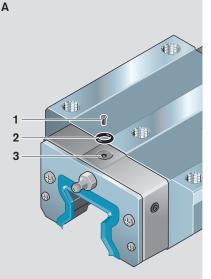
- Heat up a pointed metal punch (4) with diameter of 1.5 mm.
- · Carefully punch through the recess (5) to open the lube hole.
- Do not exceed the permissible depth T_{max} as specified in the table!

Size

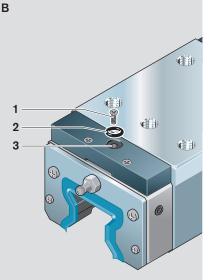
25

35

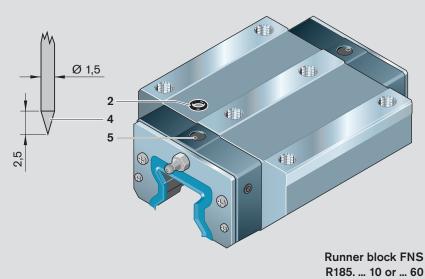
45


55

65


100

 Insert O-ring (2) in the recess (O-ring is **not** supplied with the runner block).


For subsequent lubrication from above of high runner blocks S.H, use a lube adapter (not included in supply scope; please consult us).

Runner block SNH R1821 ... 17 or ... 67 slimline, normal, high (example)

Lube hole at top:

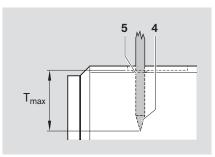
for punching open

T_{max} (mm)

4

5

5


5

5

5

Maximum permissible depth

flanged, normal, standard height (example)

Maintenance

Cleaning cycle

Dirt can settle and encrust on guide rails, especially when these are not enclosed.

To ensure that seals and cover strips retain their functionality, this dirt must be removed at regular intervals. It is advisable to run the machine through at least one full cleaning cycle over the entire installed rail length every 8 hours. Depending on the amount of soiling and on the coolant used, more frequent cleaning may be required.

Before shutting down the machine, always run two cleaning cycles over the entire installed rail length, followed by at least two lubrication cycles over the entire installed rail length.

Checking accessories

All accessories used for scraping or wiping the guide rails must be checked at regular intervals. In environments with heavy soiling, it is

advisable to replace all the parts in the soiled area.

We recommend checking the accessories at least once a year.